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Introduction
What do we observe?

I Ancient man might have started watching the sky out of pure
boredom. And so in all its glory, began astronomy...

I He would have started classifying objects into those that move
with respect to the sky background and those that don’t.
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Introduction
Retrogade Motion

Motion of Mars in the sky.
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Introduction
Ptolemy’s Model of Epicycles

I Ptolemy assumed that planets moved around the earth . To
explain retrograde motion, he used a complicated system of
epicyles (circles around circles) to replicate observations.

I The complexity of this model increased as we made more
accurate observations.
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Introduction
Kepler’s Laws

There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.

Kepler after years of digging through painstaking observations of
Tycho Brahe, came up with three laws that characterized planetary
motion.

I The orbit of a planet is an ellipse with the Sun at one of the two
foci.

I A line segment joining a planet and the Sun sweeps out equal
areas during equal intervals of time.

I The square of the orbital period of a planet is proportional to the
cube of the semi-major axis of its orbit.
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Two Body Problem
Setting up the game

I Are these laws fundamental? Or there is something deeper
within?

I Following this philosophy, Newton came up with the inverse
square law to derive Kepler’s laws.

I

m1
d2~r1

dt2 =
−Gm1m2(~r1 − ~r2)

r3

m2
d2~r2

dt2 =
−Gm1m2(~r2 − ~r1)

r3

I These are in all 6 coupled second order non-linear differential
equations.
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Two Body Problem
Attack

I We separate the motion into independent components:

M
d2~R
dt2 = 0

µ
d2~r
dt2 =

−Gm1m2~r
r3

I The force being radial implies angular momentum conservation.
This constraints the motion of two bodies to be in a plane.

I We go to plane polar co-ordinates and obtain the following
equations:

d(µr2θ̇)

dt
= 0

µr̈ − µθ̇2r =
−Gm1m2

r2
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Two Body Problem
Finishing Off

I We define the following variables for convenience: l = µr2θ̇ and
k = Gm1m2. We get,

r̈ =
l2

µ2r3 − k
µr2

I We make the substitution u(θ) = 1/r , which further results into

d2u
dθ2 + u =

kµ
l2

I We know how to solve this, and viola

r =
p

1 − e cos θ

I It is easy to see that this is the equation of a conic section. We
have solved the two body problem. Cheers!
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Three body problem
Failure

I Historically the three body system of Sun, Earth and Moon had
attracted much attention due to its relevance in navigation at
sea.

I In 1887, mathematicians Heinrich Bruns and Henri Poincaré
showed that there is no general analytical solution for the
three-body problem given by algebraic expressions and integrals.

I The Finnish mathematician Karl Sundman proved there exists a
series solution in powers of t1/3 for the 3-body problem.This
series is convergent for all real t , except for initial data that
corresponds to zero angular momentum.

I However, for actual computation the series is pretty useless
since it converges slowly. (Video)

I Is all hope lost then?
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Three Body Problem
Revival

I These points at which an object can stay in equilibrium in the
co-rotating frame are know as Lagrange Points.

I L2 is useful for placing observational satellites that need absolute
absence of sunlight. Examples include WMAP, Planck, etc.

I A certain type of asteroids known as Trojans are present at L4
and L5 of Jupiter.
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Chaos
A necessary evil?

I Chaos: When the present determines the future, but the
approximate present does not approximately determine the
future.

I A necessary condition for continuous chaotic systems is that the
number of independent dimensions of the system must be
greater than 2.

I This follows from something called the Poincare-Benidixon
theorem, which forbids chaos for dimensions less than 2. (Video)

I Where does Chaos fit in with celestial mechanics?
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N-body systems

I If 3 bodies can exhibit such complicated behaviour, what do we
do about 4 or say a million bodies?

I If one were to judge on intuition alone, one would hope that the
case for such systems would be hopeless.

I As it turns out fortunately, life’s not so bad. (Video)

This kind of dichotomy wherein the single case looks bad
but the system as a whole behaves nicely is echoed
across physics.

I For example, compare quantum mechanical description of a
single electron and a solid object as a whole.
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That’s all folks!
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